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A. INTRODUCTION: 

Although the effective date of t h e  grant w a s  June 1, 1965, the  formal 

research e f for t  s tar ted with the academic year, t h a t  is, September 1, 1965. 
Consequently, t h i s  report covers a period of three months. 

The research e f for t  of the first three months has been devoted largely 

t o  the following tasks: 

of a mathematical description of the vibration problemand of a set of 
governing integral equations 3) outlining the approach t o  be employed in 

obtaining a solution, and 4) developing a solution of the f'undamental 

(Green's function) problem which provides the basis fo r  the solution of 

the general boundary value problem. 

1) study of relevaat literature, 2) formulation 

The progress i n  each of these tasks is discussed in the following 
sections of t h i s  report. 
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B. -sufcBEy: 

The literature that appears t o  be relevant t o  t h i s  study falls into 

three categories: (1) 
vibration problem, (2) 

to the fundamental Green's function problem, and (3) 
mathematical methods applicable t o  the solution of e i ther  the fundamental 

problem o r  the governing equations of the  general. problem. 

that which deals direct ly  w i t h  the spherical shell 

the l i t e ra ture  on plate and she l l  theory pertinent 

the l i t e r a tu re  on 

The basic literature (together with recent contributions) on spherical 

she l l  vibration has been reviewed with the objective of gaining insight into 
the physical features of t h e  problem, as w e l l  as of achieving a familiari ty 
with alternate approaches t o  shell  vibration problems. 

In  the area of plate  and shell  theory, basic works of such authors as 
Flugge, Timoshenko, Love, E. Reisner, have been studied t o  establish and 

guide the solution of the governing different ia l  equations of the fundamental 

problem. 
been reviewed. 

Related studies of the plate onanelas t ic  foundation have also 

To develop a solution t o  the governing d i f fe ren t ia l  equations for  the 

fundamental problem, basic works on different ia l  equations and mathematical 

analysis have been reviewed. 

matrix methods have been studied t o  provide guidance in the solution of the 

Also literature on numerical analysis and 
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governing integral  equations o f t h e  general boundary value problem, 

C. MATHEMATICAL FORMUUTION OF THE PROBLEM: 

A formulation (employing a Green's f b c t i o n  approach) of the general 
spherical she l l  vibration problem has been developed as part of the first 

three months research effort. 

paragraphs. 

This formulation is outlined i n  the  following 

(A more complete description is presented i n  Appendix I.) 
The vibration problem (with damping not included) is first replaced by 

an equivalent s t a t i c  problem, The i n e r t i a l  loading of the dynamic problem 

is replaced by a distributed s ta t ic  load proportional t o  the displacement. 

Additionally, an a r t i f i c e  of an e la s t i c  foundation is introduced in the 
s t a t i c  problem such t h a t  t h e  foundation reaction i s  proportional t o  the 

displacement vector but i n  opposite sense, Thus i f  the  applied load is  
proportional t o  displacement, then also the net load on the shell (applied 

load less foundation reaction) adheres t o  t h i s  proportionality. SymbolicaUy: 

(a) For the vibration problem 

where, 
a q = i ne r t i a l  shell  force per unit surface area 

p, = shellmass per unit  surface area 

w = natural  angular frequency 
u = displacement vector o f t h e  middle surface 

(b) For the she l l  on the  e las t ic  foundation 

where 

3 = net load on shell (per unit surface area) 

X = proportionality factor between applied load and displacement 
k = foundation modulus 
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1 2 
h Consequently if (- - k) is made equal t o  p w , the s t a t i c  problem 

is equivalent t o  the vibration problem. 

The equivalent s t a t i c  problem is next formulated in tenns of fundamental 

influence functions. 

known for  a unit  load (and u n i t  couple) applied t o  a point on the complete 
sphere (on an elastic foundation), then through superposition the required 

relationships may be written sat isQing boundary conditions (specified 
along a given contour) as well as the condition that the applied load be 

proportional. t o  displacement, 

In brief, i f  the displacement and stress fields are 

For condensed notation, le t :  

be the displacement vector at  point m (on the sphere) due 
t o  a unit  load vector applied at  point - n on the sphere. 

be the boundary condition "residual" vectoljc (four dimensional) 

at point - s on the contour, C, due t o  a u n i t  load vector at  

point 2 
be the boundary condition residual vector at point - s on the 

contour C due t o  corrective load system unit vecto*(four 
dimensional) at point - t on the contour, C. 

be the displacement vector a t  point - m on t h e  sphere due t o  

the corrective load unit vector at point - t on the  contour, C. 

be the applied load  ( intensity) vector at  point n 

be the displacement vector at  point m 
be the contour corrective load system at  point - t on the contour, C. 

Then employing superposition, the specified boundary conditions along C 

are sat isf ied i f  the boundary condition "residuals" vanish; t h a t  is, 

JsJ B(sJn) h(n) + C(sJt)T(t) ds = 
C 

The applied load-displacement relationship is also obtained from superposition, 

* The boundary condition residuals refer  t o  deviations from four specified 
boundary conditions along the contour, C. 

The corrective load vector includes four components of a load system 
(three force components and one force-couple) applied to the sphere at 
the contour, C. 

* 
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Were the function L(t) eliminated between equations (1) and (2) 

(by means of inverse operators), the resulting equation could be symbolized by: 

SJ 

1-s men for %(n) = u(n), equation (3) becomes 

G(m,n) %(n) = k”u(m) 
JSJ 

(4) 

which defines the eigenvalue problem for  the general s t a t i c  equivalent problem, 

and hence, for  the original vibration problem. 

D. PROBLEM SOLUTION: 

The solution of the general boundary value problem defined i n  the 

preceding section (the s t a t i c  equivalent t o  the vibration problem) can be 
conveniently divided into two general efforts. 
(or  Green’s functions) that appear i n  the governing integral  equations (1) 

and (2) m u s t  be obtained. 

the solution of the integral  equations. 

First, the influence functions 

Secondly, a general method m u s t  be developed fo r  

Considering first the Green’s functions, the research e f f o r t  t o  date has 

consisted of t he  following act ivi t ies :  

problems (of which the Green’s functions are solutions) 

the governing different ia l  equations and (3) development of a ser ies  solution 

of these equations under the appropriate boundary conditions. (These equations 

and their  solutions are discussed f’urther in section E> 

(1) definition of the auxiliary 

(2) development of 

The auxiliary problems a r e  concerned w i t h  displacements and stress 
resultants arising from a unit force or unit  force couple applied to the 

complete sphere on the e l a s t i c  foundation. Specifically, three separate 
problems require solution and are defined by the application t o  the sphered: 

(1) A unit  normal load 

(2) A unit tangential load 

(3) A unit  couple (with tangential axis). 
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In  each of these problems the displacements and stress resultants are 

sought; however, as the stress resultants are expressible as functions 

of derivatives of displacements, a solution i n  terms of displacements is 

sufficient. 
Moreover, since a rotation of the m i d d l e  surface is a directional 

derivative of normal displacement, then fran B e t t i ' s  reciprocal theorem, 
a solution t o  problem (3) ( for  the unit couple) is provided directly by 

solutions t o  problems (1) and (2). Finally, i f  the  normal load problem 
(1) is first solved, the  solution t o  problem (2) is i n  part obtained again 
by means of the  reciprocal theorem; tha t  is, the normal displacements for  
the unit  tangential load would be obtained. 

I n  s~rmary  then, the auxiliary problems reduce t o  (A) solving fo r  
displacements resulting from a uni t  normal load and (B) solving for  the 

tangential components of displacement resulting from a unit  tangential load. 
Turning next t o  the solution of the integral  equations (once they are 

obtained), the research e f for t  t o  date has been limited t o  the formulation 

of a suitable numerical approach. 
a f i n i t e  difference approximation t o  the integral  equations, with the  integral  

operators replaced by influence matrices and the unknown f'unctions by 
n-dimensional vectors (corresponding t o  n points on the  surface). The 

eigenvectors and eigenvalues would then be found by the  Vianello-Stadola 
i te ra t ive  method. 

more detail  in Appendix II. 

In  essence, the method consists of solving 

The steps i n  the numerical solution are described i n  

E. THE GREEN'S FUNCTIONS: 

The research e f for t  t o  date i n  the area of development of the Green's 

functions, has been limited to obtaining equations and developing a solution 
t o  the  first fundamental problem (that of the unit  normal load applied t o  

the spherical she l l  on an e las t ic  foundation). 
and compared with those found i n  several. references.* These equations were 
then modified by a variable substitution t o  eliminate trigonometric coeffi- 
cient functions. 

The equations were derived 

* Ex: Flugge, Stresses i n  Shell. 

5 



. 

The fundamental set of solutions f o r  the  resulting different ia l  

equations were developed i n  the  form of powers series (with a logarithmic 

coefficient function appearing i n  one solution) . 
The recursion fonnulae associated with the ser ies  solutions have 

been programmed fo r  computer evaluation. 

are enforced i n  the computer solution. 
The required boundary conditions 

The details of the reformulation and the  ser ies  solution o f t h e  

equations are presented i n  Appendix 111. 
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APPENDIX I MATHEMATICAL FORMULATION 

The natural frequencies and m o d e  shapes are sought for  a segment of a 
spherical shel l  subject t o  specified boundary conditions. 

section ( C )  of the report text,  a subs t i tu te  s t a t i c  equivalent problem is 

instead considered, i n  which a complete spherical she l l  on an e las t ic  

As developed i n  

foundation is loaded over that portion of the spherical surface enclosed by 
a contour C (corresponding t o  the edge of the segment) and loaded by l ine  
loads and moments, along the contour C. 

t o  make the two problems equivalent are  
force m u s t  be proportional t o  displacement (2) the desired boundary conditions 
m u s t  be enforced along the contour C. 

The conditions t o  be met in order 

(1) the s t a t i c  distributed surface 

To simplify the present discussion, we consider the case of a free 
boundary (along contour C); that  is, the s t ress  resultants (per unit  length) 
along the edge must be zero. 

Mn and Vn 

According t o  Kirchhoff's formulation, PIn, Nnt, 
m u s t  each vanish at the boundary, where referring t o  the sketches, 

Forces/unit length Force couples/unit length 

Nn & Nnt are membrane s t ress  resultants 

Mn is the bending moment 

m n t  
vn = ($ + T), a s t a t i c  equivalent no& edge reaction, 



If w e  denote the four quantities Nn, NntJ Mn, 'vn by R1, R2, R3, R 4  and 
refer t o  them as boundary condition "residuals", w e  note the boundary conditions 

are met i f ,  Ri = 0 along the contour C. 

X e x t  consider possible " l i n e  loads" applied to the complete sphere along 
t he  contour, which loads are t o  assist i n  meeting the boundary conditions. 

Referring t o  the above sketch, let:  

L2, L4, 5 be rectangular components of force (per unit  length) which are 

respectively, tangential t o  the curve C, nomal t o  the surface, 
and i n  the th i rd  orthogonal direction 

be a force couple (per unit  length) with axis  tangential t o  the  

curve C. 
L3 

If w e  introduce a reference polar axis f o r  the complete sphere, surface 
points m y  be located by the polar coardinates 
meridinal angles respectively, (p1 measured from the pole). 

pl and 13, the  la t i tud ina l  and 

Let two three-dimensional vectors Q ucr (greek indices for  three 

dimensions) be defined such tha t :  

are components of  the applied surface force (per uni t  surface 
area) i n  normal direction, tangential t o  the meridian circle, 
and tangential to the latitude circle,  respectively. 

are  the displacement components of the shell middle surface ( in  

the normal, and two tangential directions, respectively). 

Ql, 92' Q3 

"1, u p  "3 
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W e  define next the Green's Functions: 

Aa&j,O,ZG) as the  displacement u (at point @,e) due t o  an applied force a 
vector p (at point z,G) whose components are each unity. 

as the  boundary condition residuals Ri (at point - s on the 

contour C) due the same applied force vector p (at s,i) 
as the  boundary condition residuals Ri (a t  point - s on contour C)  

due to an applied l ine load system K (at point - t on contow: C)  

whose components are each unity. 

B 
B. (s,;,G) 

1 B  

B 
CiJ (S  J t  

J 

Daj(@,e,t) as the  displacement ua (at point #,e) due t o  the same l i n e  load 
system K. (at p o i n t  - t). 

J 

acting over the surface element - Q, we may 98 Tien for  the applied force, 

express the resulting contribution t o  the boundary condition residuals: 

or  employing the  summation convention ( for  repeated indices): 

(a function of t). dRi(t) = 98 BiB - 
Similarly, for  an applied force system, Li acting over the arc length ds 

(of the  contour C),  the  contribution t o  residuals is: 

dRi = Lj  Cij  ds 

Thus through superposition, the requirement that residuals vanish along 

contour C is m e t  i f ,  
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i n  a similar fashion, t h e  contributions t o  displacement, from the  

applied surface load 
axe respectively: 

901 (acting on dg) and t h e  l i n e  load L. (acting over ds) 
1 

= *as ' du = Lj Daj a 

and hence, the displacement at surface point (#,e) is: 

The formulation of the problem 

tha t  

i s  completed w i t h  the  further requirement 

(3b) ' 

where X is the eigenvalue of the problem. 

If the integral  equations (la) and (2a) 
f i n i t e  difference approximations t o  these equations, t he  integral  operators 

Secome rectangular matrices and t h e  functions u % and Li become column 
matrices (or "vectors"). 

elements, the nth element denoted by L b n .  

the  mth segment. 

of Appendix 1, are  replaced by 

a' 

Let the surface S (enclosed by the  contour C )  be subdivided in to  - N 

A l s o  l e t  the contour C be subdivided in to  - M segments, with Asm denoting 

The integrals of equation (la) may then be approximated by mechanical 
quadratures; for  example , 

N 
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(m,n) I s  B %@ @th 
evaluated at the central. points of the  mth segment where 

on contour C and the  n surface element. 

fo r  surface element kn. % (n) is the central  value of 98 
Next l e t  the symbol [B] denote a 4M by 3N rectangular matrix whose 

be a column matrix whose element in row [3(n-1) + e] is clfl(n). 
element i n  row [4(m-1) + i] and column [3(n-1) + a] is B. (m,n) Aon. 

l e t  

Also 
1 8  

then 
N 

1 Big(n,n) s(n> aan = CBI ; 
n=l 

W e  define other rectangular and column matrices correspondingly t o  
represent the other integral  operators and rfunctions appearing i n  equations 

(la) and (2a): 

Matrix Element Row Column 

2 

L 

a 
U 

The mechanical quadrature approximation t o  equations (la) and (2a) is then: 

[B] < + [C] ? = 0 

[A] + [D] L = u 
A 

-1 If [C ] denotes the inverse of  matrix [C], then from equation (lb): 

2 

L = -[C-’] [B] < 



T h i s  may be substituted i n t o  equation (2b) t o  obtain: 

.+ 
[A]; -[D][C"][B] = u 

o r  

1 A  Pinally, i f  5 = u, w e  may write: 

where 

[GI = {[A] -[Dj[C-l][B;j 

The eigenvalue problem symbolized by equation ( p )  may be solved 

conveniently by the Vianello-Stadola i te ra t ive  method. 

eigenvalue and mode shape,the matrix [G] is then purified of that mode shape 

characterist ic such that higher order modes and eigenvalues will emerge. 

Upon obtaining each 

APPELQLY 111 SOLUTION OF FIRST l"DANERT& PROBLEM 

'The first fundmental problem is  that associated with a spherical 
she l l  cc an e l a s t i c  foundation sabJected t o  an applied unit  n o r d l  load. 

the wit normal load is  located at  the  pole ( g  = 0) then the  problem possesses 
golar sjzmetry. Employing the notation and sign conventions used by Timoshenko 

In "Th20ry of Plates and Shells", the stress resultants for the  polar symmetric 

problem are as they appear i n  the  sketch below: 

If 



0 

(NiGro) 

Qgror = (M@ro) - M r cos 9 

+ N r sin @ + ( a  r ) = 8 i d 0  
-rorZ 

0 
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0 d( 
a p r -  where ( ) denotes 

c 

Equilijriwn of the element leads to: 

0 

(N r ) - N r cos pr - (Q6ro) = -r rY @ O  e 0 

For the symmetric problem, stress-strain and strain-displacement 
relationships may be combined to obtain expressions for the stress resultants 
in terms of displacements: 

v = poisson's ratio and w, ? are E32 where D = K =  
32 ( 1- v2 ) (1-v2) 

displacement components. 
The elastic foundation reaction loads are: 

Y = -kG J z = -6 (5 is the foundation modulus.) 

Defining dimensionless variables and constants: 

the substitution of expressions (2c) and (3c) into the equilibriun equations 
(IC) leads to two equations in v and w: 



3 2 3 8 ~ ( w o )  + ~ ( v )  - l+v rvo s i n  gi + v s i n  @ cos @ - 2~ sin @] - ; w sin3 gi = o a i  
( 5 4  

where the operator L( ) and J( ) are defined by: 

2 2 2 L( ) P ( ) O O  s i n  $ + ( )" s i n  cos gi -( )(cos pr + v s i n  gj 

Tne higher order derivatives o f  

by subtraczing s in  @ - (eqmtion 4c) and adding cos gi (equation kc). 
the  tr igonozetric coefficient f b c t i o n s  nay then be eliminated i n  both 

eqilations through the introduction of  new variables: 

v appearing i n  equation (5c) nay be eliminated 
d 
dpl 

Additionally, 

V y=- 
cos gj x = s in  @ and 

The result ing two equations are: 

where: 

4 H(w) - fs (l+v) -(31 r(x3 - x5)y1 + (x2 - 2x )y] = 0 
L a  -JL 

d 
dx 

( ) l  z -  

G( ) = (x2 - x4) ( ) ' I  + (x - 4x3)( ) '  - ( ) 

H( ) 5 (x3 - 2x 5 7  + x ) (  ) Iv + (a2 - lox 4 + 8x 6 ) (  - 
(x + 8x3 - 12x 5 ) (  ) I '  + ( ) '  + $[2(ltV) + p] x3( ) 
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I me boundary conditions to be met at  the  pole, @ = 0, are: 

y(0) = 0 and lim (Q ~ R X )  = 1 
!ij 

w'(0) = 0, 
X 4  

A sufficiently large value of  the  e l a s t i c  foundation constant 2 is 

assmed t o  insure ra2id decay of displacements and stress resultants with 
lncreasing gi ( i n  the physical problem) such t h a t  a negligible e r ror  is 
introdwed if stress resultants are set equal t o  zero for an appropriately 

large v d u e  of x (say 5). ~ h u s  a t  x = "1, the  boundary conditions become: 

N (x ) = 0, ZJy)  = 0 t Q&%> = 0 
! i j l  

It is  possible t o  obtain formally se r ies  solutions ( i n  x) fo r  w and 

y of the forn: 
m m 

r+n w = 1 anx y = 7- bnx r+n 

n=O n=l 

The indic ia l  equations of the different ia l  equations I and I1 are 

then respectively: 

r (r-2) = o 
2 2 r (r-2) = G 

Gtlnough the roots (r = G,2)  differ by an integer, independent solutions 

corresposding t o  each root are obtainable, as the second order recurrence 
relationship fo r  equation I1 is  identically satisfied for  arbi t rary a2: 

O * a 2  = 0 

Consequently, the  solutions take t h e  form of ordinary power series i n  - x: 
03 CD 

b x n  n 
a x  . Y =  

n=O n=l 



Thus three l inear ly  independent solutions are obtained by l e t t i ng  the  

arbitrary constants ao, a ana b each independently be non-zero 

(while the  remaining two are zero). 

satisfij identically the boundary conditions: 

2 1 
Moreover, the  solutions so obtained 

Consequently, the four remaining boundary conditions require for  t h e i r  
sat isfact ion a fourth l inesr ly  independent solution. The repeated roots of  
t he  ind ic ia l  equation (for  the d i f fe ren t ia l  equation 11) suggest a solution 

of the  form 

n w = q l m )  + 1 cnx 

4 A oc 
where w and y are a combination/series solutions already obtained. 

It may be ver i f ied that a fourth solution consistent with the  boundary 

conditions on w and y c8n be found formally, i f  

A w = Canx ~n 

where: 
A a = O  1 2a a % =  - -  1% 2 

A 

Tne coefficients c2, dl are arbi t rary 

se t  equal t o  zero. 

n 
X 

and fo r  convenience are 

Four recurrence formulae are obtained upon substi tution of (6c) and (7c) 
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* 

where : 

;I, = (n-l)(n+l) 
A 

L~ = -4n(n-1) (n-2) 

= 2(n-2) 2 (4n-11) 
L2 

L3 = -2{(n-k)[(n-5)(2n-3) +4] -11 

A b and a2 may be found by applying ao9 a2J 1 
The arbitrary constants 

the remaining four boundary conditions: 

l im(Q@ 2xx) = 1 , Q&y) = 0 , N ( x ) = O  # 1  , M ( x ) = O  E31 1 
X-4 
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